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It has been shown previously that rational thermodynamics provides general foundations of
mass-action kinetic law from the principles of continuum, irreversible thermodynamics.
Practical outcomes of this phenomenological theory are analyzed and compared with tradi-
tional kinetic approaches on the example of N2O decomposition. It is revealed that classical
rate equations are only simplified forms of a polynomial approximation to a general rate
function proved by the continuum thermodynamics. It is also shown that various special
considerations that have been introduced formerly as additional hypothesis to satisfactorily
describe experimental data are naturally included in the thermodynamic approach. The
method, in addition, makes it possible to obtain more general mass-action-type rate equa-
tions that give better description of experimental data than the traditional ones. The
method even reverses the classical kinetic paradigm – reaction scheme directly follows from
the rate equation. Data fitting by this method also indicates connections to distinctions be-
tween processes at the molecular level and their representation by some macroscopic reac-
tion network. The role of dependent and independent reactions in reaction kinetics and
reaction schemes is clarified. A selected example demonstrates that this thermodynamic
methodology may improve our design and understanding of thermodynamically and mathe-
matically necessary and sufficient reaction schemes. The phenomenological theory thus
sheds new, “thermodynamic” light on what has been and is done by generations of kine-
ticists and gives new hints how to do it in a way consistent with non-equilibrium thermo-
dynamics.
Keywords: Kinetics; Reaction mechanisms; Rate equations; Reaction networks; Thermody-
namics.

1. INTRODUCTION

Chemical and chemical engineering kinetics has developed into an estab-
lished discipline indispensable especially in applied research or industrial
chemistry. One of its most important outputs is the design of reaction rate
equations and reaction mechanisms or networks which are called hereinaf-
ter reaction schemes. Reaction schemes and rate equations are usually very
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closely related. Laboratory experiments reveal products that are formed
from an initial reacting mixture as well as intermediate species formed dur-
ing the transformation of reactants into the products, detect concentration
changes of perhaps all constituents of reacting mixture during the reaction
time and also the temperature effects. Based on this information a potential
reaction scheme is proposed that includes all detected constituents. To each
step of the scheme a rate equation, mostly of the mass-action type, is attrib-
uted. The resulting rate equations are fitted to experimental data to deter-
mine their parameters (rate constants) and then used, e.g., for reactor
design. When more potential mechanisms or networks are proposed, exper-
imental data fitting is used to select the most probable one. As a rule, the
label “reaction mechanism” is appropriated to a set of real elementary reac-
tions whereas a system of reaction steps which need not necessarily repre-
sent individual molecular events is called a “reaction network”. The met-
hod that is discussed here should apply to both mechanisms and networks;
therefore, no special distinction is made and only the name “scheme” is used.

There is no definite and full theory for predicting reaction schemes and
what is now known about mechanisms or networks consists largely of em-
pirical classification1. Kinetic experience has collected a number of clues
and rules for designing schemes1. Recently, Ross published an overview of
some new approaches to deducing reaction schemes based on controlled
(perturbation) experiments2. More and more often methods of molecular
modeling, in particular the quantum chemistry calculations, are used to
support the finding of reaction mechanisms by looking for the most proba-
ble intermediates and their location on the reaction coordinate.

The traditional kinetic mass-action law, i.e., formulating reaction rate as a
difference of two terms representing forward and reverse reaction rates each
being in the form of product of rate constants and respective concentra-
tions, plays a central role in the design of rate equations corresponding to
the selected scheme. Phenomenologically, the kinetic mass-action law is an
empirical law and its theoretical motivations or even proofs originate in
molecular (statistical) theories. Perhaps the only phenomenological proof
was given by Samohýl within the framework of rational thermodynamics3–6.
Before going into details, attempts to relate (phenomenological, macro-
scopic) chemical reaction kinetics and thermodynamics will be briefly re-
viewed. Sometimes, the derived rate equations are subjected to testing their
thermodynamic consistency. This mostly means putting some restrictions
for thermodynamic equilibrium (usually the minimum of the reaction
Gibbs energy) in which the reaction rate should vanish (for review, see
ref.7). During last decades the relationship of thermodynamics to chemical
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kinetics has developed and progressed a substantial step further from the
textbook attitudes that, with respect to a chemical reaction, thermodynam-
ics says if and kinetics how.

Double, i.e., thermodynamic and kinetic, description of equilibrium initi-
ated various thermodynamic consistency tests and modifications of rate
equations written as the traditional kinetic mass-action law8–15. Some stud-
ies moved deeper into the relationship between kinetics and thermodynam-
ics, particularly in respect to deriving the kinetic mass-action law from
thermodynamic considerations or, at least, to prove its consistency with
modern, non-equilibrium thermodynamic theories. Most of these works
were made within the framework of extended irreversible thermodynamics.
García-Colín and de la Selva16 derived a “general phenomenological rela-
tion” which expresses the reaction rate as a function of powers of affinity.
In paper by García-Colín et al.17 it is claimed that the kinetic mass-action
law was derived from the extended irreversible thermodynamics approach.
In fact, this means some equation for the time derivative of reaction rate,
which is dependent on affinity, heat and diffusion fluxes and some un-
determined function. Resulting equation is of theoretical value but would
not probably serve to practical chemical kinetics7. Fort et al.18 published
extended irreversible thermodynamic phenomenological model of non-
equilibrium chemically reacting systems. The most important finding is that
non-equilibrium correction to the specific entropy is an expression of the
second power in the reaction rate. No explicit kinetic equation was found.

Lengyel in a series of papers19–22 tried to generalize the kinetic Guldberg–
Waage (mass-action) law using non-equilibrium thermodynamics based on
Gyarmati’s variational approach. Actually, he introduced this law into the
non-equilibrium framework to rederive it again after some mathematical
manipulations7. Its general form is really too general to be applicable in
practical kinetics, particularly because it contains affinities in the forward
and reverse reaction directions separately with no hint how to find them in
reality. Similar conclusions can be made on the papers by Oláh23–28.

Several studies on chemically reacting systems have come also from the
continuum, especially rational thermodynamics29–36. Concerning chemical
kinetics they usually led only to very general statements on the function
form of the reaction rate, e.g., the reaction rate is a function of densities
(i.e., mass concentrations) of components present in the reacting mixture,
temperature, and gradients of density, temperature and deformations. No
particular form of the function is derived. As noted above, perhaps the only
exception is Samohýl’s approach3-6. In fact, he was able to derive the mass-
action kinetic law simply from thermodynamics. Samohýl really proved
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that the reaction rate is a function of temperature and concentration but
only in the reacting mixture of fluids with linear transport properties.
Briefly, this is a mixture with (general) Newtonian flow behavior and, of
course, with heat transfer and mass transport, i.e., a material model of
broad interest for practical chemistry. In more complex material models the
reaction rate can be a function of more variables than just temperature and
concentration29–36. Thus, not only the mass-action law was proved but also
its limited validity was clearly stated. Samohýl’s thermodynamically consis-
tent method has interesting consequences also for the design of reaction
schemes that have been illustrated in our previous work37. The reaction
scheme results directly from the rate equation.

The method and its potential have not been further investigated and
tested, perhaps because the originals mostly gave the general mathematical
basis only. It provides a well-defined thermodynamic framework for the de-
sign of reaction rate equations and schemes but there are no practical expe-
rience and comparisons with traditional approaches. It is the aim of this
paper to further study this method and its application on a simple reaction
example, to compare the obtained rate equations and schemes with those
arrived at by the traditional approach and further, to exemplify the
method, to explain its functioning and to enlighten both its power and
limitations.

The decomposition of nitrous oxide was selected as the reaction to illus-
trate the rational thermodynamic method. This reaction has been studied
for many years and a vast amount of experimental experience has been
gathered. It should be stressed that it is not the aim of this paper to discuss
or evaluate published data or reaction schemes for N2O decomposition. The
reaction should serve just as an illustrative example for equations resulting
from the thermodynamic method, an example of what can be and cannot
be obtained and expected from the thermodynamic methodology, and as
a comparative test for traditional mass-action rate equations.

We are primarily interested in homogeneous reaction, i.e., in thermal
or perhaps photochemical N2O decomposition. The most simple and
straightforward approach to description of kinetics of N2O decomposition
was through the time change (derivative) of its concentration (partial
pressure). This approach was not universal over the whole range of N2O
initial pressures and it is commonly accepted that the reaction order chan-
ges from two to one and also the low and high pressure limits for the corre-
sponding rate constant are reported38. Experimental studies were initiated
by M. A. Hunter as early as 1905 39. In his experimental arrangement only
bimolecularity could be stated. Bimolecularity was confirmed lately by

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 9, pp. 1375–1401

1378 Pekař:



Hinshelwood and Burk40 but the next contribution from the same labora-
tory41 already reported on a combination of mono- and bimolecular pro-
cesses. The complex nature of N2O decomposition over the range of initial
pressures was subsequently confirmed by E. Hunter42, who also proposed
three reaction steps (see below for details). It should be noted that these
initial deductions were made mostly on the basis of the measured depend-
ence of the reaction half-life on the initial pressure of N2O.

With a rapid evolution of experimental techniques in the second half of
the last century, more and more complex and sophisticated studies on N2O
decomposition appeared using, e.g., optical and photometric or mass spec-
troscopic methods, which resulted in revealing various possible intermedi-
ates or components in the reacting mixture. Many of them were reviewed
in a comprehensive kinetics monograph38 where the main reaction steps
are given. Results are often given in terms of the formal first-order rate con-
stant k (coefficient, more precisely), estimated from the equation d dN O2

c t/ =
−kcN O2

, which is pressure-dependent. From the later works let us cite only
the detailed computer modeling study by Konnov and de Ruyck43 where
almost 30 potential reaction steps were collected from literature together
with their activation energies and pre-exponential factors.

The paper is organized as follows: Section 2 briefly recapitulates the
methodology and principles of its application in kinetic investigations.
Sections 3–5 exemplify a variety of rate equations that can result from an
experimentally determined composition of a reaction mixture on different
levels of knowledge of intermediates and side-products, and show how the
equations can be interpreted to devise a reaction scheme. Section 6 adds
important notes on details of the procedure and explains how the reaction
scheme appears in the rate equation. Section 7 stresses the most important
general benefits of this methodology.

Examples demonstrate that the published schemes or rate equations are
just special (simplified) results of the rational thermodynamic methodology,
which offers also more general results. The methodology may even reverse
the traditional paradigm in the rate-scheme research as is illustrated below.

2. THEORY AND ITS APPLICATION

For reader’s convenience, the basic principles of the method are summa-
rized in this section. More details can be found in original sources includ-
ing the basics of continuum or rational thermodynamics44. Samohýl has
proved3–6, using all axioms of rational thermodynamics including the
second law and indestructibility of atoms (no nuclear transformations
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are considered), that in a reacting mixture of fluids with linear transport
properties the reaction rate of an independent reaction is a function of
temperature (T) and component densities only. As the densities are directly
and simply related to the molar concentrations (ci), this function can be re-
formulated as

J = J(T, c1, c2, ..., cn) (2.1)

(n is the total amount of components in reacting mixture). Components of
the vector J are the rates of all independent reactions (Jk), which are r in to-
tal, J = (J1, J2, ..., Jr). The number of independent reactions is found from the
postulate of indestructibility of atoms expressed in terms of linear algebra45.
Thus, all independent reactions generally have the same form of rate equa-
tion. It should be stressed that the otherwise trivial result (2.1) that is used
by generations of kineticists and established by their experience was thus
justified for the first time by a (phenomenological) theory and its limited
validity for the linear fluids only was demonstrated.

General function (2.1) is then approximated by a polynomial of degree M
in concentrations3–6.

J = k�β

βα
α
ν

αβ
βα

α

νc M
=

nZ n

11 1
∏∑ ∑

= =

≤, (2.2)

The vector k�β
contains polynomial coefficients. They are dependent on

temperature only and can be interpreted as traditional rate constants3–6,37.
Vectors �β = (νβ1, νβ2, ..., νβn) contain the polynomial powers and are used
also as subscripts to index various vectors of the polynomial coefficients
( )k�β

. When used in subscripts of the vectors k�β
elements of the vectors �β

are written without commas and parenthesis. Note that the vector element
νβα determines the power at the concentration of component α in corre-
sponding polynomial term. Total number of polynomial terms is given by

Z
n k
k nk

M

= + −
−=

∑ ( ) !
!( ) !

1
10

. (2.3)

Equilibrium is defined as a state where the rates vanish, Jeq = 0. Conse-
quently, the polynomial (2.2) with equilibrium concentrations should van-
ish as well. At the same time the relationships for equilibrium constants of
all independent reactions should be valid.
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K cp
P

n p

=
=

∏ ( )α
α

αeq

1

, p = 1, 2, ..., r (2.4)

Here, Kp is the equilibrium constant of the p-th independent reaction and
Ppα is the element of stoichiometric matrix, i.e., the stoichiometric coeffi-
cient of component α in reaction p. Note that at this moment only ideal
systems are considered but including non-ideality through activities is
straightforward4,5, see also the last paragraph of this section. Using rela-
tions (2.4) some equilibrium concentrations can be expressed through the
others and substituted into the vanishing equilibrium polynomial. The
number of different concentrations in the equilibrium polynomial is thus
reduced and polynomial terms with equal powers of the same concentra-
tions can be gathered. The simplified equilibrium polynomial should van-
ish in every equilibrium, i.e., for arbitrary selection of the equilibrium
concentrations. To satisfy this requirement some coefficients in the modi-
fied polynomial should be zero. This leads either to vanishing of some
polynomial coefficients in the vector k�β

or to a possibility of expressing
some of its elements through the others and equilibrium constants3–6. Since
the polynomial coefficients were proved to be functions of temperature
only, these assertions are valid also off equilibrium. The final simplified
rate equation then results. The method is inherently flexible – various ver-
sions of rate equations can be derived depending on the degree of approxi-
mating polynomial. All alternatives can be then subjected to confrontation
with experimental reality. On the other hand, the form of the resulting rate
equation (for a polynomial of given degree) does not depend on which re-
actions were selected as independent4 as is also illustrated below. It should
be stressed that the method does not consider the kinetic mass-action law
a priori and does not construct any polynomials from rate equations of the
mass-action type. The polynomial does not approximate mass-action equa-
tions but the general rate function described above. However, it will be
shown below that the resulting rate equations can be interpreted within the
mass-action tradition.

Let us point out that the approximation (2.2) is not just a polynomial ap-
proximation but a specific approximation subjected to thermodynamic
conditions of reaction equilibria and what matters here is its kinetic conse-
quences and not the approximation itself. Note also that the procedure of
deriving the rate equations results in automatic fulfillment of the detailed
balance, i.e., in principle, reversibility of all reaction steps and their equili-
bration when equilibrium of the reacting system is attained. Let us further
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remark that the discussed procedure indicates that the detailed balance may
be a consequence of the permanence of atoms46.

To apply the method, components of a reacting mixture have to be de-
termined first from experiments or perhaps also from quantum chemistry
calculations. This is necessary for finding the number of independent reac-
tions and stoichiometric matrix. Regarding our example of the N2O reac-
tion, first studies considered just the simplest stoichiometric equation, i.e.,
a mixture of nitrous oxide, molecular oxygen and nitrogen. With progress
in experimental techniques more constituents were detected or assumed
and the reacting mixture has started to be more complex. Therefore the
thermodynamic methodology can be advantageously demonstrated on sev-
eral reacting mixtures of increasing complexity and simulate application of
the presented methodology by former investigators having had different
level of experimental knowledge of the composition of reacting mixture.

Thermodynamic consistency of the method is rooted in the very proof
of the function (2.1) during which all principal postulates of rational ther-
modynamics, not only the “second law”, have been applied3–6 and in the
transformation of rate polynomial (2.2) using the equilibrium condition
together with the temperature-only dependence of the polynomial coeffi-
cients, also proved by the rational thermodynamics. The resulting rate equa-
tion can be re-introduced into the entropy inequality (the “second law” of
thermodynamics) which places another restriction on the values of the rate
coefficients4,5. However, the restrictions can be analytically resolved only
for very simple reacting systems (schemes). Realistic values of the rate coef-
ficients should be thus obtained principally by the experimental data fit-
ting, considering, as usual only those values that give non-negative concen-
trations.

The main steps of the method in the design of rate equation (and
scheme) thus are37:

– to determine all relevant components of a reacting mixture, including
intermediates;

– to construct polynomial (2.2) of a suitable degree (usually two or three),
taking into account the selected set of independent reactions;

– to substitute some equilibrium concentrations from the expressions for
the equilibrium constants of independent reactions, Eq. (2.4), in the equi-
librium polynomial;

– to form the equilibrium polynomial in the remaining equilibrium con-
centrations;
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– to apply the condition of universality of equilibrium to find which
polynomial coefficients or their combinations are equal to zero3–6,37, cf.
section 6;

– to introduce the zero coefficients (combinations) into the original,
non-equilibrium polynomial; the final rate equation results.

The rate equation is then applied to experimental data and the whole
procedure can be repeated, e.g., with a polynomial of different degree, to
obtain the best and realistic data description.

It should be noted that the described method does not a priori distinguish
ideal and non-ideal systems. Examples given here are formulated in con-
centrations as in all original papers on N2O decomposition and as it is the
most frequent case in kinetics. The simplest way to take into account non-
ideal systems is to transform the initial general rate function from the con-
centration- and temperature-dependent one an activity- and temperature-
dependent form, which is quite an easy task3–5, and express equilibrium
constants in activities. All examples presented here would remain valid but
concentrations should be replaced with activities.

3. REACTION MIXTURE CONTAINING N2O, N2, O2

This simplest mixture was considered at the early beginning of investiga-
tions on N2O decomposition; nowadays it is a history. Here it serves as an
introductory illustration of the method. The mixture is composed of three
components (n = 3); hence, only one independent reaction is possible. It
can be best selected as the overall stoichiometric reaction

2 N2O = 2 N2 + O2 . (3.1)

Let us number the components as follows: 1 = N2O, 2 = O2, 3 = N2.
The approximating first- and second-degree polynomials are identically

zero. The third-degree polynomial gives the following equation

J k c K c c= − −
200 1

2 1
2 3

2( ), (3.2)

i.e., an ordinary mass-action law. Thus, the traditional rate equation is re-
covered and it is, in fact, the third-degree polynomial approximation to the
general rate function (2.1). A non-traditional, more general equation can be
obtained with the fourth-degree polynomial, which results in

J k c K c c k c K c c c= − + − +− −
200 1

2 1
2 3

2
300 1

3 1
1 2 3

2( ) ( )
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+ − + −− −k c c K c c k c c K c c210 1
2

2
1

2
2

3
2

201 1
2

3
1

2 3
3( ) ( ) . (3.3)

In previous works3–6,37 it was proposed to interpret rate equations ob-
tained with the polynomial approximation as containing mass-action terms
corresponding to the individual steps of reaction scheme. Equation (3.3)
contains four such terms and the scheme corresponding to them is

1. 2 N2O = O2 + 2 N2

2. 3 N2O = N2O + O2 + 2 N2

3. 2 N2O + O2 = 2 O2 + 2 N2

4. 2 N2O + N2 = O2 + 3 N2 . (3.4)

It should be stressed that although only one independent reaction exists,
four reactions appear to be significant in the rate equation (3.3). Scheme
(3.4) just illustrates an additional interesting feature of the presented
method – direct design of reaction schemes from kinetic equations.

Equation (3.3) can be further modified

J k c K c c k c c K c c= − + − +− −
200 1

2 1
2 3

2
300 1 1

2 1
2 3

2( ) ( )

+ − + − =− −k c c K c c k c c K c c210 2 1
2 1

2 3
2

201 3 1
2 1

2 3
2( ) ( )

= + + + − ≡−( )( )k k c k c k c c K c c200 300 1 210 2 201 3 1
2 1

2 3
2

≡ − −k c K c c( )1
2 1

2 3
2 (3.5)

where k is the concentration-dependent rate “constant” (coefficient, more
precisely). Equation (3.5) expresses the reaction rate just with the mass-
action term corresponding to the selected (and the only independent) reac-
tion (3.1) only, but now the rate coefficient (k) is concentration-dependent.

Equation (3.5) allows to derive directly various historical proposals made
ad hoc on the basis of experimental results that were inconsistent with the
traditional simple mono- or bimolecular processes. Introducing the mate-
rial balance for a batch system (Table I) we get

J k a x K x= − − −[( ) / ] ,2 1 3 2

k = k200 + k300a + (k210/2 + k201 – k300)x ≡ k200 + k300a + kx (3.6)
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where k is concentration-independent. Experimental results suggest that
K >> 1, i.e., reaction (3.1) is virtually irreversible. Then J = k(a – x)2. As
d dN O

N O

2

2c t J J/ = = −2 , where J N O2 is the rate of N2O formation, we obtain
the following differential equation for the batch system.

–d dx t/ = –2(k200 + k300a + kx)(a – x)2 (3.7)

Equation (3.7) can be formally rewritten as

–d dx t/ = k1(a + x) + k2(a – x)2 (3.8)

where k1 = 2(k200 + k300a)(a – x) and k2 = 2kx. Equation (3.8) expresses the
rate as a sum of monomolecular and bimolecular processes just as assumed
by Musgrave and Hinshelwood41, in our case with rate coefficients (k1 and
k2) generally dependent on concentration.

Integrating Eq. (3.7) within the limits 〈 〉0;t and 〈 〉0;x we obtain

2t A k k kx B a x C a x A k k Ba a= + − − + − − +( / )ln| | ln| | /( ) ( / )ln| | ln| | /a C a− (3.9)

where

A k ka k B k ka k C ka k k k ka a a a= + = + = + = +2 2 2 2
200 31/ ( ) ; / ( ) ; / ( ) ; 00a .

The examined reaction mixture was considered mostly in the first stud-
ies39–42 which usually discussed the dependence of the reaction half-life
(t1/2) on the initial concentration (pressure) of nitrous oxide. It did not cor-
respond either to the pure mono- or bimolecular process. From Eq. (3.9),
this dependence is
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TABLE I
Material balance for reaction mixture N2O–N2–O2 in batch system

Time

Concentration

N2O O2 N2

0 a 0 0

t a – x x/2 x



t1/2 =
+ + − + + + +k k k a ka k k a k a ka k(ln| / | ln| |) ln (200 300 200 3002 2 200 300

200 300
22

+
+ +

k a

ka k k a

)

( )
.

(3.10)

Equation (3.10) has a finite limit as can be easily found using the l’Hospital
rule

lim / ( )/a
t k k

→ ∞
= +1 2 3001 2 . (3.11)

This is in contrast to the first- or second-order rate equation and agrees
with experimental findings on the high pressure limit.

Thermodynamic procedure thus can lead even within this simple react-
ing mixture directly to several conclusions that could not be derived using
single traditional first- or second-order rate equation for the same reaction
(3.1) and should be introduced as extra hypotheses. However, Eq. (3.10) is
not flexible enough to fit all experimental data given, e.g., by Hunter42.
Examples are given in Fig. 1; note that the trimolecular step (3.4.2) could be
neglected.

Although the discussed approach gives better fit of experimental data
than a simple traditional combination of the first- and second-order reac-
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FIG. 1
Dependence of the reaction half-life on the initial pressure of nitrous oxide. Data points given
by Hunter42, lines calculated from Eq. (3.10) with k, k200, k300 equal to 0.018, 0.015, 0 ( )
and 0.02, 10–6, 0 (- - - -), respectively (inset is a detailed view at low initial pressures)
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tion steps and offers an alternative to ad hoc models in the form of sum of
rational functions42, it cannot be considered as fully satisfactory. Thus, an
attempt to describe the reaction of N2O decomposition using a mixture of
N2O, N2 and O2 is to be considered unsuccessful. Already Hunter42 pro-
posed an explanation including also atomic oxygen, although its concen-
tration could not be detected at that time.

4. REACTION MIXTURE CONTAINING N2O, N2, O2, O

This is the most natural extension of the preceding reacting mixture and
corresponds to those papers where also atomic oxygen was measured or, at
least, considered in addition to the principal reactant and products. In this
case n = 4 and two independent reactions are possible. Let us select them as
perhaps the most logic and reasonable from the chemical standpoint.

1. N2O = N2 + O

2. O + N2O = N2 + O2 (4.1)

The first-degree approximating polynomial is identically zero. The second-
degree polynomial gives the following rate equation.

J k k k= − + − +− −
0010 3 1

1
2 4 0110 2 3 2

1
1 4 0200 2( ) ( ) (c K c c c c K c c c 2

1 2
1

1− −K K c ) (4.2)

The components are numbered as follows: 1 = O2, 2 = O, 3 = N2O, 4 = N2;
Ki is the equilibrium constant of reaction (4.1.i). Note that all vectors are
two-component: J = (J1, J2), kijlm = ( , )′ ′k kijlm ijlm

1 2 , Ji is the rate of reaction (4.1.i).
To distinguish a vector component index from a simple power in super-
scripts the former is preceded by a comma. In this case, the traditional
mass-action law corresponding to reactions (4.1) is not recovered and can-
not even be considered as a second-degree polynomial approximation to
the general function (2.1). Similarly as in the preceding part, Eq. (4.2) can
be interpreted as describing the rate of the nitrous oxide decomposition by
the following scheme.

1. N2O = N2 + O

2. O + N2O = N2 + O2

3. O + O = O2 (4.3)
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It is interesting that this is just the scheme proposed by Hunter42. Besides
the two independent reactions one additional step appears – a very logical
and plausible recombination of atomic oxygen (4.3.3). Thus the rational
thermodynamic approach directly proposes an experimentally acceptable
scheme regardless of selected (a lower number) independent reactions;
the scheme can even contain (thermodynamically) dependent steps. The
dependence of reactions means here that the third step in (4.3) can be ex-
pressed as a difference between the second and first step.

It has been also generally proved that the resulting (“polynomial”) rate
equation does not depend on the selection of independent reactions4. That
is, selecting, e.g., the pair 2 N2O = 2 N2 + O2 and N2O = N2 + O as the set of
independent reactions also leads to the form (4.2) but now the equilibrium
constants refer to the new selected independent reactions. Because the pro-
posed reaction scheme directly follows from the rate equation this further
means that also the scheme is independent of the selection of independent
reactions.

As in the preceding part let us assume that the reverse reactions can be
neglected. From the stoichiometric algebra, the formation rates for nitrous
oxide and atomic oxygen are

J J JN O2 = − −1 2 J J JO = −1 2 . (4.4)

For a batch reactor it results

d dN O
N O

2

2c t J k k c K c c/ ( )( )≡ = − ′ − ′ − +−
0010
1

0010
2

3 1
1

2 4

+ − ′ − ′ − + − ′ − ′−( )( ) (k k c c K c c k k0110
1

0110
2

2 3 2
1

1 4 0200
1

0200
2

2
2

1 2
1

1)( )c K K c− − (4.5)

d dO
Oc t J k k c K c c/ ( )( )≡ = ′ − ′ − +−

0010
1

0010
2

3 1
1

2 4

+ ′ − ′ − + ′ − ′−( )( ) (k k c c K c c k k0110
1

0110
2

2 3 2
1

1 4 0200
1

0200
2 )( )c K K c2

2
1 2

1
1− − . (4.6)

It is possible to recover classical mass-action balances for the scheme (4.3)
as a special case of Eqs (4.5) and (4.6). Let us make the following consider-
ations, cf. (4.3), (4.5) and (4.6)

− − ′ − ′ = ′ − ′ ⇒ ′ =( )k k k k k0010
1

0010
2

0010
1

0010
2

0010
2 0

− ′ − ′ = ′ − ′ ⇒ ′ =k k k k k0110
1

0110
2

0110
1

0110
2

0110
2 0

− ′ − ′ = ⇒ ′ − ′ = ′k k k k k0200
1

0200
2

0200
1

0200
2

0200
10 2 (4.7)
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and assume further that

′ > ′ > ′ <k k k0010
1

0110
2

0200
10 0 0; ; . (4.8)

Note that generally there is no demand on non-negativity of polynomial
coefficients which are interpreted as the rate constants. In simple reaction
systems the entropic inequality may set such requirement directly4,5 but
generally the coefficients may be also negative. Introducing a new notation

k k k k k k1 0010
1

2 0110
2

3 0200
1≡ ′ ≡ ′ ≡ ′; ; (4.9)

the following results are finally obtained

–d d d dN N O2 2
c t c t/ /≡ =

= − − − −− −k c K c c k c c K c c1 1
1

2 2
1( ) ( )N O O N O N O O N2 2 2 2 2

(4.10)

d dO N O O N2 2
c t k c K c c/ ( )= − −−

1 1
1

− − − −− −k c c K c c k c K K c2 2
1

3
2

1 2
12( ) ( )O N O O N O O2 2 2 2

(4.11)

and also

d dO O N O O N O O2 2 2 2 2
c t k c c K c c k c K K c/ ( ) ( )= − + −− −

2 2
1

3
2

1 2
1 . (4.12)

Equations (4.10)–(4.12) represent just the classical mass-action expressions
corresponding to the scheme (4.3) and containing only positive rate con-
stants. Derivation of Eqs (4.10)–(4.12) demonstrates further that the tradi-
tional mass-action law for this scheme is a special, simplified case of the
second-order polynomial approximation to the general function (2.1).

What about if some experiment shows that all three reactions (4.3) pro-
ceed and not just independent steps (4.1), if there such unambiguous ex-
periment can exist at all? Algebra of stoichiometry tells45 that just two
reactions are sufficient to describe transformations of the detected constitu-
ents in the given reacting mixture. There is no need to use the rate of reac-
tion (4.3.3), say J3, besides the rates of reactions (4.1). However, the mass-
action term corresponding to this dependent reaction appears in the rate
equations derived for the two selected independent reactions, conse-
quently, also this dependent reaction may affect reaction kinetics. The pre-
sented methodology clearly shows that equations for rates of independent
reactions may contain “additional” (dependent) reaction terms.
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Numerical simulations made with irreversible versions of the new equa-
tions (4.5), (4.6) and traditional equations (4.10), (4.11) clearly illustrate a
much better potential of investigated methodology for description of exper-
imental data. The curves calculated with the latter equations are still not
sufficiently curved to fit Hunter’s half-life data (see Fig. 2 for some of the
best attainable fits). Data description is yet worse than with a simpler reac-
tion mixture in the previous section. Traditional rate equations are not able
to represent the large difference in half-lifes measured for low and high
input pressures. On the other hand, the equations derived by the studied
thermodynamic approach give quite a satisfactory fit shown in Fig. 3 and in
Table II.

A substantial distinction between otherwise similar traditional and new
equations consists in the rate coefficients. Whereas the traditional equa-
tions (4.10) and (4.11) contain the same coefficients (ki) in corresponding
terms in parentheses, analogous coefficients in the new equations (4.5) and
(4.6) are not generally identical but are equal to different combinations
(differences) of ′kijlm

1 and ′kijlm
2 . This distinction is rooted in Eq. (4.4) and also

in the general form of polynomial rate equation (4.2). Although the forma-
tion rates of both N2O and O contain the same parenthesis terms resem-
bling mass-action concentration expressions (see Eqs (4.5) and (4.6)) they
have different origin as Eq. (4.4) refers to. They are the result of different
combinations of underlying step rates (J1 and J2). In other words, the cause
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FIG. 2
Dependence of the reaction half-life on the initial pressure of nitrous oxide. Data points given
by Hunter42. The line was calculated using the traditional mass-action equations (4.10) and
(4.11) with k1 = 0.0002, k2 = 0.000045 and k3 = 0 neglecting reverse reaction rates
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of distinction is the transformation (4.4) of reaction rates into component
rates. Although the reaction rates have the same form their coefficients are
generally different. Whereas this explanation is quite plausible in pheno-
menological (macroscopic) description, interpretation on molecular level
would deserve further study. At this moment it can be assumed that the
difference in phenomenological rate coefficients (traditionally termed rate
constants), which are necessary for adequate smoothing of experimental
data, indicates that the employed scheme does not exactly reproduce
events on the molecular level and is only their plausible macroscopic repre-
sentation, i.e., the method can indicate whether we have a reaction mecha-
nism or network.
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FIG. 3
Dependence of the reaction half-life on the initial pressure of nitrous oxide. Data points given
by Hunter42. The line was calculated with the new equations (4.5) and (4.6) neglecting reverse
reaction rates; rate coefficients are given in Table II
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TABLE II
Rate coefficients in Eqs (4.5) and (4.6) used in numerical simulation (Fig. 3)

′k0010
1 ′k0010

2 ′k0110
1 ′k0110

2 ′k0200
1 ′k0200

2

8.415 × 10–5 –8.585 × 10–5 –8.415 × 10–5 –8.585 × 10–5 8.500 × 10–5 –8.500 × 10–5



5. REACTION MIXTURE CONTAINING N2O, N2, O2, O, NO, NO2

This mixture follows from many published works and is considered as gen-
eral in the review by Bamford and Tipper38 if we consider the general spe-
cies M given in them to be one from the set N2O, N2, O2 or NO. M can
symbolize also an inert gas but this has no substantial impact on the fol-
lowing discussion.

In this mixture, four independent reactions are possible. Let us select the
following quaternary.

1. N2O = N2 + O

2. N2O + O = O2 + N2

3. N2O +O = 2 NO

4. O + NO = NO2 (5.1)

Approximation by the second-degree polynomial leads to the following rate
equation.

J k k= − + −−
100000 1

1
101000( ) (c K c c c c K c cN O N O N O O I NO NO2 2 2 2 2

) +

+ k k100100 3
1 2

100010 1 4( ) (c c K c c c K K cN O O NO N O NO
–1 –1

2 2
− + −−

N NO2 2
c ) +

+ k k011000 2 3
1 2

000110 4( ) ( )c c K K c c c K cN O NO O NO
–1

NO2 2 2
− + −− +

+ k k000101 000200
2

1 2( ) ( )c c K c c c K K cO NO II O NO O
–1

O2 2 2
− + − (5.2)

where K K K K KI
–1 –1 –1= 1 2 3 4 and K K K KII

–1= 1 2 4 . The corresponding scheme is as
follows.

1.* N2O = N2 + O

2. N2O + O2 = NO + NO2

3.* N2O + NO = N2 + NO2

4.* O + NO = NO2

5.* O + NO2 = O2 + NO

6.* 2 O = O2
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7.* N2O + O = 2 NO

8. N2 + O2 = 2 NO (5.3)

The second-order steps reported by Bamford and Tipper38 are recovered
(marked by asterisk) with two steps more. The missing third-order steps of
Bamford and Tipper would appear in the third-degree polynomial approxi-
mation, which is not discussed here.The traditional mass-action kinetics
corresponding to steps (5.1) is thus neither second- nor third-degree poly-
nomial approximation to the general rate function (2.1).

All selected independent steps (5.1) except the second one appear in the
list (5.3). Remember that its rate is nevertheless contained in the vector J
and its equilibrium constant in the rate equations (5.2), i.e., this step was
not actually excluded from kinetic description. In fact, this step is a result
of subtraction of the step (5.3.8) from the step (5.3.7). The thermodynamic
method just shows how the rates of independent reaction steps can be
“translated” into the rates of more and dependent steps forming a scheme
suitable for description of chemical changes in the reacting mixture under
consideration. This is a unique feature of the method – not only that it op-
erates just on independent reactions but it does not exclude other steps
from affecting reaction kinetics and even shows how the dependent step
may influence the rates of selected independent steps and, consequently,
the overall reaction kinetics. It is also worth noting that the concentration
term directly corresponding to the mass-action expression for the step
(5.1.2) has ostensibly “disappeared” from Eq. (5.2) just due to the equilib-
rium condition, i.e., just due to the requirement that the approximating
rate polynomial should vanish at equilibrium. Details of this procedure are
explained in section 6.

Four components of vector J in (5.2) are the rates of selected independent
reactions (5.1), i.e., Ji. If we want to obtain just the classical rate equations
for the scheme (5.3) with only irreversible steps, let us select the values of
polynomial coefficients (rate constants) in Eq. (5.2) as given in Table III
and set all the other coefficients equal to zero. It can be easily verified that
the resulting formation rates

J J J JN O2 = − − −1 2 3

J J J J JO = − − −1 2 3 4

J J JN 2 = +1 2
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J JO2 = 2

J J JNO = −2 3 4

J JNO2 = 4 (5.4)

are in accord with this tradition. Consequently, the traditional mass-action
rate equations are, in this reacting mixture, special cases of the second-
degree approximating polynomial to the general rate function (2.1).

6. FUNCTIONING OF THE METHOD

In this section explanatory notes on how the method works are given. The
method is rooted in a strict mathematical logic. For instance, in the react-
ing mixture N2O, N2, O2 the monomolecular step (decomposition of ni-
trous oxide) could not appear as the atomic oxygen was not present in the
list of components. Therefore, the rate equations could not have the form
of sum of terms with first and second powers of the nitrous oxide concen-
tration, i.e., sum of the first- and second-order steps with respect to N2O.

Why, for instance, in the reacting mixture N2O, N2, N2O, O does not ap-
pear the step 2 N2O = 2 N2 + O2 in the resulting polynomial and the other,
(4.3.2), not included among the independent steps, has “appeared” in the
scheme (4.3)? The full approximating second-degree polynomial is in this
case as follows (to simplify notation, vector components are not distin-
guished by special indices).

J k k c k c k c k c= + + + + +0000 1000 1 0100 2 0010 3 0001 4

+ + + + + +k c k c c k c c k c c k c c2000 1
2

1100 1 2 1010 1 3 1001 1 4 0110 2 3

+ + + + +k c c k c c k c k c k c0101 2 4 0011 3 4 0200 2
2

0020 3
2

0002 4
2 (6.1)
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TABLE III
Specific selection of rate coefficients in Eq. (5.2a), (ki > 0, i = 1, 2, ..., 8)

′k100000
1 ′k101000

1 ′k101000
2 ′k101000

3 ′k101000
4 ′k100100

3 ′k100010
1 ′k100010

4

k1 k2 −k2 k2 k2 k7 k3 k3

′k011000
2 ′k011000

3 ′k000110
4 ′k000101

1 ′k000101
2 ′k000101

4 ′k000200
1 ′k000200

2

−k8 k8 k4 −k5 k5 −k5 −k6 k6



In the next step when the equilibrium relations are applied, only those
polynomial terms (powers of concentrations or their products) “survive”
that appear at least twice and with different coefficients. Such associated
terms may appear in the polynomial only after substitutions from the ex-
pressions for equilibrium constants, (2.4).

In our example of the independent reactions (4.1) the following relations
for the equilibrium constants are used.

K c c c K c c c c1 2 4 3 2 1 4 2 3= =eq eq eq eq eq eq eq/ ; / (6.2)

From them, e.g., concentrations of the first and third component are ex-
pressed.

c K c c c K c c c K K c3 1
1

2 4 1 2 2 3 4
1

1
1

2
eq eq eq eq eq eq eq= = =− − −; ( ) ( 2

2eq ) (6.3)

Substituting them into the equilibrium (vanishing) polynomial (6.1), a
polynomial with two variables only results. The term which would corre-
spond to the forward step 2 N2O = 2 N2 + O2, i.e., k c0020 3

2( )eq , appears only
once. Further, the term corresponding to its reverse direction does not ap-
pear at all (it would require a third-order polynomial). Therefore, the term
k c0020 3

2( )eq can vanish in the equilibrium polynomial only by setting k0020 =
0 and that reaction step “disappears” from the final kinetic equation.

On the contrary, the term corresponding to the forward direction of the
independent reaction (4.1.1), i.e., k c0010 3

eq , can be combined in the equilib-
rium polynomial with the term k c c0101 2 4

eq eq , because due to (6.3), the follow-
ing identity is valid.

k c k K c c0010 3 0010 1
1

2 4
eq eq eq= − (6.4)

Consequently, in the equilibrium polynomial the combined term
( )k K k c c0010 1

1
0101 2 4

− + eq eq appears, which after application of the equilibrium
condition (vanishing rate regardless of particular values of equilibrium con-
centrations), leads only to the following requirement

k K k0010 1
1

0101
− = − (6.5)

and not to vanishing of the whole term, i.e., vanishing the step (4.1.1)
from the resulting reaction scheme.

For similar reasons a new reaction step not included in the set of selected
independent reactions, viz. (4.3.3), appears in the final rate equation. Thus,
the reaction (4.3.3) is a consequence of the terms k c1000 1 and k c0200 2

2 in the
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approximating polynomial, which can be combined in the equilibrium due
to Eq. (6.3) as follows.

( )( )k K K k c1000 1
1

2 0200 2
2− + eq (6.6)

The requirement for the vanishing equilibrium polynomial in any equi-
librium does not call for vanishing k1000 or k0200. Other polynomial terms
which do not have suitable counter-terms, e.g., k c0100 2

eq ; k c0002 4
2( )eq ;

k c c1100 1 2
eq eq may fulfill the general equilibrium condition only by vanishing

their coefficients, i.e., k k k0100 0002 1100; ; , and do not appear in the final
kinetic equation.

Though there is some freedom in the selection which equilibrium con-
centrations are expressed from definitions of equilibrium constants (2.4),
the resulting relationships of polynomial coefficients like (6.5) are invariant
to this selection, i.e., identical schemes follow. Because, as explained above,
also the selection of independent reactions has no influence on the form of
the rate polynomial, rate equations and resulting scheme can be varied just
by varying the polynomial degree.

Functioning of the method can be summarized in this way. Terms of
various orders in the approximating polynomial represent reaction steps of
the corresponding molecularity (or reaction order). Only those terms
(“reactions”) are retained in the final kinetic equation, that are somehow
interconnected through the equilibrium constants of the selected inde-
pendent reactions. The terms which are not linked with the independent
reactions vanish automatically.

7. SUMMARIZING DISCUSSION

Traditional mass-action rate expressions and reaction mechanisms (net-
works) are included within outcomes of the presented thermodynamic
method. Usually, they are simplified forms of functional approximation
that forms the core of the thermodynamic approach. The method further
offers more general rate expressions and corresponding reaction schemes
which can improve kinetic and thermodynamic description and under-
standing of a given reacting system. Briefly, the thermodynamic method
proposes complete plausible rate equations and reaction steps for given re-
actants, products, intermediates, and selected maximum reaction order (or
molecularity). Experiments or (quantum chemistry) calculations can then
select the best or right order and can further simplify reaction rate and
scheme.
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The example of nitrous oxide decomposition perhaps clearly illustrated
that the investigated methodology adds general framework and a new po-
tential to the traditional design of rate equations and schemes. Rational
thermodynamics sheds a new, “thermodynamic” light on what has been
and is done by generations of kineticists and gives hints how to do it in
a way consistent with non-equilibrium thermodynamics. Thermodynamics
is not merely used to test the thermodynamic consistency of proposed rate
equations but directly suggests consistent rate equations that include also
a reaction mechanism or network. The example clearly shows that tradi-
tional mass-action law kinetic equations are usually only special, simplified
cases of low-order polynomial approximations to the general rate function
that results from rational thermodynamics as a proved function.

The method starts only with the list of (experimentally determined or by
calculations confirmed) constituents of a reacting mixture and operates
only with so many reactions as corresponds to the number of independent
reactions. Polynomial-like rate equations are derived the complexity of
which can be varied by varying the degree of polynomial employed. In
most practical situations second- or third-degree polynomial should be
sufficient and recommended. Relating the results to kinetic tradition and
kinetic way of thinking, individual terms of resulting polynomial are inter-
preted as classical mass-actiontype rate expressions and a reaction scheme,
necessary for description of kinetics in the reacting mixture of interest,
then naturally follows. One of the most interesting and important conse-
quences is that not only the (mathematically, i.e., “thermodynamically”)
independent reactions may appear in the resulting rate equation and
scheme. Thus the method naturally and inherently resolves the question
on the significance of thermodynamically dependent reaction steps in ki-
netics of a reaction. The method clearly shows that reactions, which may
not be “thermodynamically” important, i.e., which are not included among
the independent reactions, may still be important for kinetic description
and may be a part of assumed reaction scheme and designed rate equations.
The correct role of (thermodynamically) independent reactions in chemical
kinetics is clarified – although these reactions control the formulation of
rate equation, the other reactions are not totally excluded from kinetic
effects.

The presented method does not construct rate equations for individual
reactions which include only those components (substances), that take part
in the particular step as is the case of traditional mass-action approach.
Therefore it can lead to some paradoxes in kinetic equations. For instance,
a reaction may seemingly “disappear” from its own rate equation (cf. the
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rate equation (5.2) for the reaction (5.1.2)) or, on the contrary, some other
reactions may “appear” in its rate equation (cf. the rate equation (3.3) for
the reaction (3.1)). The latter outcome points to a potential influence of
some reaction (in other words, of “foreign” components) on kinetics of
some other reaction or to affecting reaction rates by “inerts”. This is not
unknown even in the traditional kinetics14 but not motivated or even
proved by the classical theories and rarely used in practice. The cause of
these “external effects” lies in the rational thermodynamic proof that the
rate of any reaction may be a function of concentration of any component
from the reacting mixture.

The main cause of final modification and simplification of initial approx-
imating polynomial is equilibrium, viz. its general validity and the exis-
tence of the equilibrium constant. This stresses the power of equilibrium
state even in the non-equilibrium theories. Indeed, equilibrium is the final
state that also a non-equilibrium system should reach at last. In this work,
other modifications guided by an effort to arrive at some specific rate equa-
tions proposed for the selected example reaction were made. They may
naturally lead to concentration-dependent rate “constants”. It is worth
mentioning that the presented method enables also deriving rate equations
in the form of a known rational algebraic function, e.g. in enzyme kinetics
or Lindemann’s treatment of monomolecular reactions. Exemplification is
outside the scope of this paper and will be given in a future work.

The method enables exploitation of ample thermodynamic databases; it
does not operate with “reverse” rate constants – they are, in fact, given by
combinations of equilibrium constants which can be calculated from ther-
modynamic data. This further reduces the number of parameters that
should be estimated from experimental data. The method thus really put
together kinetics and thermodynamics.

It should be stressed that this method does not take the philosophy
“make measurements on the overall kinetics of the major species in a sys-
tem and then try to infer some reaction schemes from these data” and need
not be limited to phenomenological approaches only. Even the results of
detailed experiments made to determine all intermediates and thus to eluci-
date the resulting reaction scheme or a set of elementary steps formulated
from quantum chemical calculations should conform to thermodynamic
laws and permanence of atoms.

Usually no mechanisms or networks are directly measured. Only concen-
tration profiles of detected constituents are obtained and a mechanism or
network is inferred from them using information on constituent structures,
chemical knowledge or results of molecular modeling. If kinetic equations
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formulated from the assumed reaction scheme fit the data well, the scheme
is considered to be acceptable and sufficient. The discussed method offers
another way to do this and to do it in reverse order than traditionally – the
rate equation is formulated first and a scheme follows just from it. And all
what is needed from experiments is to find all constituents (including inter-
mediates) of a reacting mixture. The approaches presented by Ross2 also
work with the identification of “all” individual chemical species within a
reacting mixture but focus on performing and analyzing special experi-
ments which should reveal connectivities or correlations within the react-
ing system and, consequently, the reaction scheme. The presented approach,
on the other hand, provides a general and thermodynamic framework for
deducing reaction rates and schemes that needs “only” a list of the species.
Both approaches can be combined – e.g., schemes proposed by the latter
can be tested for realistic connectivities or schemes deduced by the former
may be confronted with the described consequences of permanence of at-
oms and thermodynamic consistency.

8. CONCLUSIONS

Continuum (rational) thermodynamics shows how one of the principal
laws of nature – conservation of mass – is projected into rate equations and
schemes. Kinetic consequences are close to the traditional mass-action ap-
proach that is thus put within the framework of non-equilibrium thermo-
dynamics and its potential for description of kinetic data is substantially
extended. Traditional kinetic mass-action law, that has been shown to be
limited to reacting mixtures of fluids with linear transport properties, gives
rate equations that are only simplified forms of a low-order polynomial ap-
proximation to the general mass-action rate function proved by continuum
thermodynamics. The example of nitrous oxide decomposition showed
that the method naturally and inherently contains many otherwise specific
hypotheses made to explain experimental outcomes of specific reaction
kinetics and that the proposed new, non-traditional rate equations corre-
spond to experimental data better than the traditional mass-action law.

The described thermodynamic method does not need an a priori me-
chanism statement. On the contrary, it proposes mechanisms (or net-
works) directly and clearly and naturally shows that the mathematically-
thermodynamically sufficient reaction steps may not be sufficient for the
description of kinetics. The method also provides an inherent indicator
whefher the proposed scheme that gives a good fit of experimental data is
only a plausible macroscopic representation (a “reaction network”) of the
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true processes occurring on the molecular level. The method enables the
direct use of vast data amounts from thermodynamic databases in kinetic
equations.

More complex rate equations than usual in the mass-action kinetics can
be derived; this just means that the method alerts that there can be other
influences on the rate of particular reaction than usually expected in tradi-
tional kinetics. For instance, the influence of some other components of a
reacting mixture than those directly taking part in the reaction step. After
all, the nitrous oxide decomposition discussed here is a nice example as
very decomposition step is often written not as N2O → N2 + O but as
N2O + M → N2 + O + M, where M can be any constituent of reacting
mixture.

The described method gives rules or guidance how to interpret kinetic
data within the framework of mechanisms or networks and may improve
our design and understanding of necessary and sufficient reaction schemes.
It reverses the common practice of scheme deduction – first the rate equa-
tion is constructed and just from it the scheme is inferred. The method is
firmly rooted in mathematics and thermodynamics and in experiments
that have revealed all constituents of a reacting mixture. It does not pre-
clude simplification of derived equations, which is substantiated by experi-
mental results or chemical insights.

It is hoped that from the presented example of a relatively well under-
stood and studied reaction, the kinetic community can get an idea on func-
tioning, potential and outcomes of the rational thermodynamic approach
and will help to further elaborate testing and evaluating its application in
chemical kinetics and in particular kinetic data interpretation. Perhaps any
proposed rate equation or scheme should be tested, at least, for consistency
with permanence of atoms and irreversible thermodynamics as elaborated
within the approach presented in this work.

I thank Dr I. Samohýl for many valuable discussions on thermodynamics and its consequences
for chemical kinetics. This work was supported by the Ministry of Education, Youth and Sports of
the Czech Republic (Project MSM0021630501).
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